What are the 4 basics of Machine learning ?

What are the 4 basics of Machine learning?

There are four basic approaches:supervised learning, unsupervised learning, semi-supervised learning and reinforcement learning.Machine Learning is an application of artificial intelligence where a computer/machine learns from the past experiences (input data) and makes future predictions. The performance of such a system should be at least human level. In order to perform the task T, the system learns from the data-set provided.

Techniques in Machine Learning

Machine Learning techniques are divided mainly into the following 4 categories:

1. Supervised Learning

Supervised learning is applicable when a machine has sample data, i.e., input as well as output data with correct labels. Correct labels are used to check the correctness of the model using some labels and tags. Supervised learning technique helps us to predict future events with the help of past experience and labeled examples. Initially, it analyses the known training dataset, and later it introduces an inferred function that makes predictions about output values. Further, it also predicts errors during this entire learning process and also corrects those errors through algorithms.

Example: Let’s assume we have a set of images tagged as ”dog”. A machine learning algorithm is trained with these dog images so it can easily distinguish whether an image is a dog or not.

2. Unsupervised Learning

In unsupervised learning, a machine is trained with some input samples or labels only, while output is not known. The training information is neither classified nor labeled; hence, a machine may not always provide correct output compared to supervised learning.

Although Unsupervised learning is less common in practical business settings, it helps in exploring the data and can draw inferences from datasets to describe hidden structures from unlabeled data.

Example: Let’s assume a machine is trained with some set of documents having different categories (Type A, B, and C), and we have to organize them into appropriate groups. Because the machine is provided only with input samples or without output, so, it can organize these datasets into type A, type B, and type C categories, but it is not necessary whether it is organized correctly or not.

3. Reinforcement Learning

Reinforcement Learning is a feedback-based machine learning technique. In such type of learning, agents (computer programs) need to explore the environment, perform actions, and on the basis of their actions, they get rewards as feedback. For each good action, they get a positive reward, and for each bad action, they get a negative reward. The goal of a Reinforcement learning agent is to maximize the positive rewards. Since there is no labeled data, the agent is bound to learn by its experience only.

4. Semi-supervised Learning

Semi-supervised Learning is an intermediate technique of both supervised and unsupervised learning. It performs actions on datasets having few labels as well as unlabeled data. However, it generally contains unlabeled data. Hence, it also reduces the cost of the machine learning model as labels are costly, but for corporate purposes, it may have few labels. Further, it also increases the accuracy and performance of the machine learning model.

Sem-supervised learning helps data scientists to overcome the drawback of supervised and unsupervised learning. Speech analysis, web content classification, protein sequence classification, text documents classifiers., etc., are some important applications of Semi-supervised learning.

Important Links

Home Page 

Courses Link  

  1. Python Course  
  2. Machine Learning Course 
  3. Data Science Course 
  4. Digital Marketing Course  
  5. Python Training in Noida 
  6. ML Training in Noida 
  7. DS Training in Noida 
  8. Digital Marketing Training in Noida 
  9. Winter Training 
  10. DS Training in Bangalore 
  11. DS Training in Hyderabad  
  12. DS Training in Pune 
  13. DS Training in Chandigarh/Mohali 
  14. Python Training in Chandigarh/Mohali 
  15. DS Certification Course 
  16. DS Training in Lucknow 
  17. Machine Learning Certification Course 
  18. Data Science Training Institute in Noida
  19. Business Analyst Certification Course 
  20. DS Training in USA 
  21. Python Certification Course 
  22. Digital Marketing Training in Bangalore
  23. Internship Training in Noida
  24. ONLEI Technologies India
  25. Python Certification
  26. Best Data Science Course Training in Indore
  27. Best Data Science Course Training in Vijayawada
  28. Best Data Science Course Training in Chennai
  29. ONLEI Group

Leave a Comment

Your email address will not be published. Required fields are marked *